An acceleration scheme for cyclic subgradient projections method

نویسندگان

  • Touraj Nikazad
  • Mokhtar Abbasi
چکیده

An algorithm for solving convex feasibility problem for a finite family of convex sets is considered. The acceleration scheme of De Pierro (em Methodos de projeção para a resolução de sistemas gerais de equações algébricas lineares. Thesis (tese de Doutoramento), Instituto de Matemática da UFRJ, Cidade Universitária, Rio de Janeiro, Brasil, 1981), which is designed for simultaneous algorithms, is used in the algorithm to speed up the fully sequential cyclic subgradient projections method. A convergence proof is presented. The advantage of using this strategy is demonstrated with some examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seminorm-Induced Oblique Projections for Sparse Nonlinear Convex Feasibility Problems

Simultaneous subgradient projection algorithms for the convex feasibility problem use subgradient calculations and converge sometimes even in the inconsistent case. We devise an algorithm that uses seminorm-induced oblique projections onto super half-spaces of the convex sets, which is advantageous when the subgradient-Jacobian is a sparse matrix at many iteration points of the algorithm. Using...

متن کامل

Finite Convergence of A Subgradient Projections Method with Expanding Controls

We study finite convergence of the modified cyclic subgradient projections (MCSP) algorithm for the convex feasibility problem (CFP) in the Euclidian space. Expanding control sequences allow the indices of the sets of the CFP to re-appear and be used again by the algorithm ∗Currently with the Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Ma...

متن کامل

Projections Onto Super-Half-Spaces for Monotone Variational Inequality Problems in Finite-Dimensional Space.

The variational inequality problem (VIP) is considered here. We present a general algorithmic scheme which employs projections onto hyperplanes that separate balls from the feasible set of the VIP instead of projections onto the feasible set itself. Our algorithmic scheme includes the classical projection method and Fukushima's subgradient projection method as special cases.

متن کامل

String-averaging projected subgradient methods for constrained minimization

We consider constrained minimization problems and propose to replace the projection onto the entire feasible region, required in the Projected Subgradient Method (PSM), by projections onto the individual sets whose intersection forms the entire feasible region. Specifically, we propose to perform such projections onto the individual sets in an algorithmic regime of a feasibility-seeking iterati...

متن کامل

An Incremental Subgradient Algorithm for Approximate MAP Estimation in Graphical Models

We present an incremental subgradient algorithm for approximate computation of maximum-a-posteriori (MAP) states in cyclic graphical models. Its most striking property is its immense simplicity: each iteration requires only the solution of a sequence of trivial optimization problems. The algorithm can be equally understood as a degenerated dual decomposition scheme or as minimization of a degen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2013